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NOLTR 62-177

A GENERALIZED BOUNDARY VALUE PROBLEM
FOR u =f(xjyu~ u ,uy.

INTRODUCTION

1. The Euler-Cauchy polygon method for proving the existence of a

solution for

= f(x,y) , y(O) =y

dx0

was extended by J. B. Diaz [3] to the characteristic boundary value problem

for a hyperbolic partial differential equation

u = f(x,y,u,u ,uy) ,

u(x,O) = cr(x), u(Oy) = -r(y) , a-(O) = (O)

Here f is assumed to be bounded and continuous for (x,y) in some rectangle R,

and for all possible values of u, Ux, Uy , and to satisfy a Lipschitz

condition in Ux, Uy . Under these conditions an existence theorem in the

large, i.e., throughout all of R, was obtained.

This method has been further extended by I. I. Glick [4] to the n-

dimensional analogue of (1.1),

u i . f, U on xi = 0
1 n. in



NOLTR 62-177

where f is a function of the xi's of u and of all mixed partial derivatives

of u of order less than n, and where the -'Is satisfy certain obvious com-

patibility conditions.

In the 2-dimensional case the method was extended by J. Conlan 2) to

the Cauchy problem,

=x f(xpy~upu P, P

u = 'r(x) on y =x,

(1.2) uy = -r(y) on y= x,

u(OO) =0 ,

and to the mixed boundary value problem, i.e., boundary conditions in (1.2)

replaced by

u(Oy) = r(y) , u(x,x) = Cr(x) , oo) = T(o)

In this paper we consider the 2-dimensional problem

u = f(xyuuxUy ) ,

u ( 13 + au + bu on y = r(x) ,

u =T + cu + du onx = (y) ,

n(o) = (o) = ,

u(0,0) =u 0 , a constant ,

where cr, a, b are continuous functions of x, and T, c, d are continuous

functions of y. The method of proof used here is again by an extension of

the method used in [3j. Using a different method, A. K. Aziz and J.B.DiazLl]

2
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have treated the corresponding problem for the linear equation u xy+au x+bu y+

cu = d where a,b,c, and d are functions only of x and y. We refer the reader

to [1] for a discussion of the history of the problem, and for an extensive

bibliography. In the linear case Aziz and Diaz were able to obtain an

existence theorem in the large. However for problem (1.3) all we get is an

existence theorem in the small.

We note that the characteristic boundary value problem, the Cauchy

problem, and the mixed boundary value problem are special cases of (1.3). So

also is the Goursat problem, i.e., boundary conditions in (1.3) replaced by

u(x,,I(x))= oC(x) ,

(1.-4) u(k(y),y)= '(y) )

u(OO) = a-(0) = T(O) = 0

To see this differentiate the first two of (1.4), obtaining

ux(x,n(x)) + r'(x)u (x, I(x)) = 6-' (x) ,

k'(y)Ux(R(y),y) + u y(C(y),y) = T,(y) P

and these are of the same form as the boundary conditions of (1.3).

2. The boundary value problem.

Let R consist of the points (xy) such that 0 < x < A and 0 < y B.

Let S consist of those points (u,p,q) such that - co < u,p,q < co. And let

C be the cartesian product RXS. The precise formulation of the problem to

be solved is given in the following theorem:

3
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Theorem 2.1. Hypotheses:

(a) f is a continuous real valued function of (x,y,u,p,q) in C.

(b) There is a constant M > 0 such that If(xy,u,p,q)l < M in C.

(c) f satisfies a uniform Lipschitz condition in (p,q), i.e., there

is a constant L > 0 such that

jf(x,y,u,pq,) - f(x,y,u,p,q)l _ L( F>-pl + jj-qj)
whenever the arguments of f are in C.

(d) oa,a,b, are continuous functions of x for 0 < x < A, and

T,c,d, are continuous functions of y for 0 < y < B.

(e) ja(x) c(y)l < 1 for (x,y) in R.

(f) (o) = q(o) = 0, and 0 < (y) < A, 0< q(x) < B.

(g) There is a continuous function of x, say C , such that C(0) 0,

C(A) = B, and such that y = C(x) has an inverse for 0 < x < A.

Moreover the graph of y = q(x) lies below that of y = C(x) and

the graph of x = 1(y) lies above it, i.e., n(x) < C(x) and

)(y) < C(Y)

(h) Letting 11all = sup{ Ia(x)l: 0< x < A}, etc., we assume that

(i) 11all 1lchl exp L(A+B) < 1

Conclusion:

There is at least one real valued function u(x,y) which is continuous

together with its partial derivatives ux uy u in R, and which satisfies

the partial differential equation

u (xY) = f[x,y,u(x,y), ux(xy), U y(x,y)]

4
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and which satisfies the following boundary conditions (here we use the

notation u1(x,y) = ux(x,y) and u2(x,y) = u y(X,y))

uEx[ll(x)] =0"(x) + a(x) u2Ex,i(x)] + b(x)u[x,l(x)] .

u 2[C(y),y]= -r(y) + c(y) ul[(y),y] + d(y)u[t(y),y] ,

u(O,O) = u°

The proof of this theorem will occupy the next several sections.

We note that the above boundary value problem is equivalent to the

following system of integral equations, where F(x,y) = f[x,y,u(x,y),

u1 (X,y), u2 (xy)] .

u(xy) = oxf 0(s)+a(s)u2[sl(s)]+b(s)u[sq(s)] I ds

+ T (t)+c(t)ul (t),t] + d(t)uE(t),t]}dt

y x x n(s)

(2.1) + {Odt ~tds - IX J dt IF(s,t) + uo0 (t) 0 0

U1(x,y) =a'(x)+a(x)u2[x,q(x)] + b(x)u[x,q(x)] +fy  F(xt)dt 9

q(x)

u2(xy) = '(y)+c(y)ul[t(y),y] + d(y)u[t(y),y] + f F(spy).s
C(y)

3. The finite difference scheme.

Let n be a positive integer and let 0 = x° < xl < ... < xn = A. Let

Yj = C(xj) for j = 0,...,n , where C is given in condition (g) of theorem

2.1. Then for 0 < J,k < n-l let
Rjk =1 (x,y): x. < x < xj+ , Yk < Y < Yk+l I P

and

5
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etc.

We next introduce the following functions. For (x~y) in R Jkle

~xj-1  if j> 0(Yk-l if k>O0

X~) x if j =0OY if k 0O

^(x,y) =Tx + a(x)p(xpy) + b(x) Q(x,y),

p(x,y) = r(y) + c(y)it(x,y) + d(y) Q(x,y),

x y
-Q(x'y) = IfX(s),v 1(%(s))]ds + [ ^(t))],1 IL(t)]dt

0 0

+ { ~t da - da dt} *(s, t) + U0

0 oLL~) 0 o

(Q J+1,k - j,k) / (xj+,i j) 0 , k>1 ,

%(Xy)= (Q 0 J-00 /(x i - x J..1) j > 1, k =0,

where- k = .Q(xj'Yk)I etc.,

(9J,,k+l *j,k)/ (y+7v) J 1, k >0

p(xpy)

(. %q ,k-1) /"Y kYk-1)' j = 0, k > 1

For (x,y) in R 0 0 let It(x,y) = u 1(0,0), p(xpy) = u2 (0,0) where

u 1(0,0) =0(O) + a(0) u 2(0,0)p

u 2(0,0) ='r(0) + C(0) u 1(0,0)

Let

6
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One can now verify that if Q, A, p have been computed in cells Ri,j

for 0 < i, j < k-1, then it is possible to compute ., A, p in cells Rk,j and

Ri,k for 0 < i, j < k in terms of quantities already computed in the previous

cells.

If j _ 0, k > 1 then for (x,y) in Rj,k

(3.1) R(x,y) I J,k = (.0j+l,k0jk) / (xj+1lXj)

{xj+l

j~
_ 1 [× ( ((s))]da

xj+l j

YX.
3

+[ x.3+l xj+1  ,.,[ (st),

dt ds- ds dt]

JJ

0 xji xj ,

Yk

[X_lfj(Xj-l )]L+. l (x .td

where x j_ I is to be replaced by xj when j = 0. But

- Q(xfy) = 4x(x),q(%(x))] + O(x,t)dt

xLx(x)]

y= LXj-lpn(Xj-il)] + O(x, tldt.
q(x J-1)

Since O(x,y) = C(xjy), we have

7
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i x- Xyk) = 7(X'yk) ir~<< J4 ~1

ix Q(x~ j'yk) =n(Xj'yk)

In the case~of j 1, k 0 Owe got

Similarly if j > 1, k > 0 then

(3.2) P(X~y) =P(x j'Yk) = ('J,k+17 'J, k) / yk4-fyk)

-
~k~lk

Yk+17y fX*

+ dt J (s,t)ds

= Lk(Yk-1),Ykl] + 0(s,yk)ds

where yk-I is to be replaced by Yk when k = 0. Then as above

16 Q(x.,y) ifx~ y

~ Q(XjVY) P(xj#y~

-D y k Y
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If J = O, k > 1 then

6+ = P(xYk)

We now introduce the functions pq defined as follows:

( -G(xy), x=xj
;-x

p(x,y) =
'a x XJ+l

q(x,y) = a-y(xPy), Yk < y < Yk+l

In what follows we will be interested in a sequence of subdivisions

of R such that as n tends to infinity

(3.3) a n= sup{ Ix J+xjl + lyk,3ykl: 0 < j < n, 0 < k < n

tends to zero.

To each n will correspond a particular Q,w,p,p,q etc., and when we

wish to indicate this explicitly we will write Q (n) ,,1(n) ,p (n) ,p(n) ,q(n) etc.

4. The sequences of approximating functions.

We now want to show that the sequences j(n) , { p(n), f q(n)

contain subsequences {f,(k(n)) , tp(k(n)) I, q (k(n))} such that

Q(k(n)) --u, p(k(n)) -Ul, and qukn)) _ U " where u is a solution to the

boundary value problem. Let us introduce the following definition.

9
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Definition 1. A family of functions I g(n(xy) I is equioscillating to

zero on R if for any e > 0 there is a 8 > 0 and an no > 0 such that

Ig(n)(1,y) - g(n)(x,y)l < e whenever n > no, 13-xI < 8, 1-yI < 8,(i,y) in R

and (xy) in R.

We want to show that f 0 (n)1  , P(n) (n , I are uniformly bounded

in absolute value and are equioscillating to zero on R.

Theorem 4.1. { .(n)} , (p(n) , tq(n)I are uniformly bounded in absolute

value on R.

Proof: We will first prove the theorem for (,(n)n , j n(n) , )

From the definitions of Q, i ,p (dropping the superscript n) we see that

there is a constant XI > 0 such that

11,11 ll < + 11all 11pll + Ijbil 11-911 ,
11Il < M1  + 11cll I11 + jjdjj I1 11 t

I11,11 M, + A Ilwli + B lIp~l

Hence

I 1XI I< M + ISLIa I Ml+ Ilcl II Ixl I + IIdll I 11,11 + I JbI I 11- l11

and since 11al Ilcil < 1 ,IlI l I tM_<ja j + (11all jjdj +I I I I II I1 1 -11all 11co lI
Similarly

IIPII < {(llcjj) + (Ijbll Ileo11 + IIllllIIQI 1 -11all jjocjj-

Therefore,

Ilol < MI[l + A(l+1lali)+Bl+jicjI) +I I lall [loll I

HaUll Ml

10
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and so by condition (h) of theorem (2.1) the I10 11's are uniformly bounded,

and hence so are the (kujj's amd the I1pII's.

But it is obvious that the uniform boundedness of the 1I111's implies

the uniform boundedness of the 11p[j's, and similarly for the 1lpil's and

Ilq11's.

In order to show that the sequences are equioscillating to zero we

need the following result.
X

Theorem 4.2. If O< g(x) < M and O< g(x) < y + Lj g(s)dsl for O< a < A,

0 < x < A, thn g(x) < y exp(LA). a

Proof: If a < x then
x S X

g(x) < T+ L y + L g(Sl)ds 1 1 ds < y(l+LA) + L2  ds jg(sl)dS1

a d a a

< "' LT (Lk)n + M (A
n7-o n'. (N1n-o

Theorem 4.3. Each of the sequences ( 4(n)l , {p(n) , q(n)j is equi-

oscillating to zero on R.

Proof: The theorem is obviously true for { 0 (n)j . We next consider{ ,(n)l

and p(n)} . Let us assume (x,y) in R j,k and (xy) in RjK and J,J,k,K all

>1. Again suppressing the superscript n, we have

I (ii)- n(x,y) I < I (3,y)- i(d,y) I + l (i,y) - ,(x,y).

It is obvious that given e > 0, there is a 8 > 0 such that (for n large enough)

- x(xy)j < e/2 whenever(y-y) < 8 . Hence we need only consider

the term lj(x,y) - x(x,y)j . Similarly it is only necessary to consider

lp(x,y) - p(x,y)j. But then by (3.1), (3.2), and applying the Lipschitz

condition to f,

11
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+ LI Ix(.;pt) - i(x~t)IdtI,.

q(x)

IP(xi) - P(xty)l < Y+ 11ll lK(E(YK)p'y) -[Eyk#)

+ L I f jp(sqj) - p(s,y)ldel

where T > 0 is equioscillating to zero.

Therefore by theorem 4.2,

I W(34y) -%(xty)jI +1 jall lpxqx)-~~~ ) ) exp(LA)

jIP(xpy) -P(xly)I <{ y + hlchl bdw(YK)PY) - 1(E(yk)PY)l1 exp (LB)

If' we choose constants Op wj, * such that

0 <Texp(LA) 0~ 0<Yexp(LB) p, lallexp(LA) w, Ilcjjexp(LB)=#,

then

1x(XJ IYk) - 'x (x P Yk)l I + tI PL x iq(xj)] - xj9()1

Ip(XjP*YK) - P(xj'yk)l + *lwLk(YK)'YkJ - ll~k'Vl

Repeated application of these last inequalities gives

hl(xJT'yk) - 7[(x joYk )I < + W(A +*1l(rL1(xj))1i(x~) - qx),(j1

- (l+u) +W1(nx)P( - rXq~(xj)),9 (xj)]j g l(w) { ~r+

(WO~) +1 sup { b(1jy)- ir(xy) I ; (!.y) ER, (x,y) cR 7

Thus if w* < 1 then i { is equioscillating to zero. But

12
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w* = flail Jfcil exp[L(A+B)], and this is < 1 by hypotheses (i) of

theorem 2.1. We dispose of f p(n) I in a similar way.

It is obvious from the definition of pq that since ( JnlI , ap(") are

equioscillatiig to zero on R, then so are P(n)3 p I q(fl)3

5. Convergence to a solution.

Since each of the sequences I 9(n) ', {P(n) j q (n)j is equibounded

and equioscillating to zero, we can apply Arzela's theorem. More specifically

we can find a subsequence (n(s)j 00 of { n1 such that Q(n(s))converges

s=1 nl

uniformly to a continuous limit function 0* on R. Then we can find a

subsequence t n(s(t)) " of ( n(s)j such that p(n(s(t))) converges uni-

formly to a continuous limit function p* on R. But then we can find a sub-

sequence ( n(s(t(k)))l of (n(s(t))l such that q(n(s(t(k)))) converges

uniformly to a continuous limit function q* on R. If we now choose the

original subsequence n(s) t cwith n(s(t(k))) 0 then for
s~l k=1

(x,y) in R

lim Q(n(s))(Xy) = Q*(x,y)
S -. 00

lim p (n(s))(x,y) = p*(x,y)

lim q (n(s))(x,y) = q*(x,y)

5 -01 00

We want to show that Q*(x,y) is a solution of the boundary value problem,

and that

p* - q*"x ' Y

13
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To this end consider

(5.1) Q (Xi))) - *~ X + a(s)q*(s,vq(s)) + b(s) ,Q*(s~v1(s))]ds

+ [,~t)+ c(t)p*(t(t),t) + d(t) -Q*(k(t)vt)]dt

0

+[ dt do - X do dt]f~s,tQ*(s,t),p*(s..t),q*(s,t)] + u0
0 t(t) 0 0

Suppressing the superscript on Q(n(i)) and using the fact that

P[Xx)jL()1= ir(x,y), q[%(x),v(y)] =p(x,y)

the above expression is just equal to

Ixt [O(Xs)) -aF(s) + a(X&(s))q[%(s),j(X(s))] a(s)q*(s,(s))

+ b(X(s)) OL~)v(~)]-b(s)OQ*(s,r1(s)) I ds

+ ~{G~)-()+ c(k(t))pWI(t))OIL(t)] - c(t)p*(Wt)Vt)

0

+ d(1L(t)).QLk(jL(t)),I.L(t))] - d(t) @*(k(t),t) I} dt

y x x r(s) *

+- dt do d- f do dt fIX(s),I'(t)0 .Q(X(),~Ij(t)),

0 ((t) o o

p(%(), ~t),q~sj&t) - f~spt,Q9*(spt),p*(st),q*(s,t)] + Y

where 1T11! I 4B sup IRL(t)] - Ct)j + A sup IriLX(s)]-v,(s)I'
O<t<B Q<s<A

and this last trm goes to zero as the all (defined by (3.3)) goes to zero.

14
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The absolute value of the integrand in the double integrals is not greater

than

+

By the uniform convergence of Q,p,q to .*,p*,q* respectively, and by the

continuity of f,r,ra,b,c,d it is clear that (5.1) goes to zero as .(J)- oo.

All that remains to do is to show that

P-- =p, - =q*
bx y

To do this proceed with p and q in the same way as we did with 0, i.e.,

consider for example

p (n(j)) (x,y) -{cr(x) + a(x)q*(xtq(x)) + b(x)Q*(x,q(x))

+ f [xtQ*(xt),p*(xt),q*(xt)]dt J
I(x)

As in the case of (5.1) this expression goes to zero as n(j) -co. Hence

lir p (n(j)) p=

Similarly we can show that q* . This completes the proof of theoremby

2.1.

6. Other conditions on f.

It was shown by Glick (3] that in the case of the n-dimensional charao-

teristic boundary value problem the condition that Ijf be bounded can be

replaced by the condition that f satisfy a Lipschitz condition in u as well

15
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as in the partial derivatives of u. The following theorem shows that we can

get a similar result for problem (1.3).

Theorem 6.1. We make the same assumptions in theorem 2.1, except that

conditions (b) and (c) are replaced by the following condition:

f satisfies a uniform Lipschitz condition in (u,p,q) i.e., there is

a constant L > 0 such that jf(xy,U,pj)- f(x,y,u,p,q)j < L(ji-ul +

I-pj + 1--qj) whenever the arguments of f are in C.

Then for A,B sufficiently small, we have the same conclusion as in theorem

2.1.

Proof: Let T(x,y,u,p,q) = f(x,y,0,0,O) and let -, -, T denote 4, 7t, p

corresponding to the function F. Then since ITI is bounded on R and hence on

C, the sequences 7 1(n) , (n) I , { (n) } are uniformly bounded on R.

Hence there is a constant M > 0 such that

+ L II Ot II + I 11 I+ I II j dt I
q

< M + 11all 11p l + Ijbll I11,11 + 1B(IIQII + 111 + 1ip11).

Similarly

11Ill _< M + Ilcll Jjnjj+jldjj 11-911+ LA<II'9jj+jIxjj+jjpjj)

and
11-911 M + A(IjaII jjpjj+jlbjj 11'911)+B(Ilcll jj'ijj+jjdjj II-Q11)

+ LAB( 11Q11 + I-AI1 + IIl I)

16
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It is obvious that for AB sufficiently small we can proceed as in section 4

(n) (n) (n)
to prove the uniform boundedness of p . The rest of

the proof goes through as before.

Finally we note that the boundedness of Ifj or the Lipschitz continuity

of f with respect to u can be replaced by the condition

jff < K(Iu + IpI + jqf)
for some constant K > 0. To see this it is only necessary to point out that

in this case we have

fpII I la- +IIc II pl+lbIl lQII +KB(I[I + 117III I p II1) ,

11pll _< lljl+jlcjl ll~jj+jjdll 119I1+KA(II-QII + 117ilI + llpll) ,

11 11 _ A(Il I1+Ilall IlplI +llblf II - 1)+B(IrI+1Icll ll ll114 11l011)
+ KAB(jQ + I+1,11I + IIpI)

and again, for A,B sufficiently small it follows that { o(n)j , f,(n)} j

P (n) I are uniformly bounded.

This kind of condition on f has been used by Z. Szmydt [5] who treats a

similar problem by a fixed point technique.
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